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Summary. High-density restriction fragment length poly- 
morphism (RFLP) and allozyme linkage maps have been 
developed in several plant species. These maps make it 
technically feasible to map quantitative trait loci (QTL) 
using methods based on flanking marker genetic models. 
In this paper, we describe flanking marker models for 
doubled haploid (DH), recombinant inbred (RI), back- 
cross (Be), F 1 testcross (F 1 TC), DH testcross (DHTC), 
recombinant inbred testcross (RITC), F2, and F 3 progeny. 
These models are functions of the means of quantitative 
trait locus genotypes and recombination frequencies be- 
tween marker and quantitative trait loci. In addition to 
the genetic models, we describe maximum likelihood 
methods for estimating these parameters using linear, 
nonlinear, and univariate or multivariate normal distri- 
bution mixture models. We defined recombination fre- 
quency estimators for backcross and F 2 progeny group 
genetic models using the parameters of linear models. In 
addition, we found a genetically unbiased estimator of the 
QTL heterozygote mean using a linear function of mark- 
er means. In nonlinear models, recombination frequen- 
cies are estimated less efficiently than the means of quan- 
titative trait locus genotypes. Recombination frequency 
estimation efficiency decreases as the distance between 
markers decreases, because the number of progeny in 
recombinant marker classes decreases. Mean estimation 
efficiency is nearly equal for these methods. 
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Introduction 

High-density restriction fragment length polymorphism 
(RFLP) and allozyme linkage maps are the technological 
tools needed to efficiently map quantitative trait loci 
(Lander and Botstein 1989). Marker loci are typically 
dispersed at 1-30 centimorgan (cM) intervals in high- 
density maps. These maps have several significant fea- 
tures. They provide fairly complete genome coverage and 
increase the probability of finding QTL. In addition, they 
enable the use of flanking marker genetic models. In the 
flanking marker model, it is hypothesized that a quantita- 
tive trait locus lies between linked codominant marker 
loci (Weller 1987; Lander and Botstein 1989). These mod- 
els are more efficient than individual marker models for 
estimating the effects of quantitative trait loci (Lander 
and Botstein 1989). The individual marker locus model 
describes the cosegregation of a marker locus linked to a 
quantitative trait locus. 

Weller (1987) described the expected values of the 
means of nonrecombinant F 2 marker classes using flank- 
ing markers. These values and expected values of in- 
dividual marker genotype means were used to define an 
estimator of the recombination frequency between the 
marker and quantitative trait locus (r 0. The expected 
values of the means of marker genotypic classes have not 
been described for backcross and F 2 progeny using flank- 
ing markers, except for those for nonrecombinant F 2 
marker classes (Weller 1987). 

Individual marker models have been described for 
various progeny types (Soller and Brody 1976; Soller 
et al. 1979; Weller 1986; Cowen 1988). The expected val- 
ues of marker genotype means in these models are non- 
linear functions of means of QTL genotypes and r I . Be- 
cause of this, linear models based on individual marker 
models cannot be used to estimate quantitative trait lo- 
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cus parameters (Weller 1986), unless quantitative trait 
locus genotypes are used as independent variables and a 
method is used to simultaneously estimate missing quan- 
titative trait locus genotypic values. This is done in the 
linear model algorithm proposed by Lander and Botstein 
(1989). In individual marker models, QTL genotypic 
values are completely missing. 

Linear model analyses of individual marker locus 
genotypic classes have been widely used in crop species 
(Edwards et al. 1987; Osborne et al. 1987; Stuber et al. 
1987; Tanksley and Hewitt 1988; Young et al. 1988). In 
these studies, contrasts among marker means have been 
used to estimate QTL effects. These contrasts underesti- 
mate the effects of quantitative trait loci, as is well known, 
because they are confounded with the recombination fre- 
quency between the marker and quantitative trait locus 
(Lander and Botstein 1989). The expected values of con- 
trasts among homozygote marker means (additive effect 
contrasts) in F2 and doubled haploid progeny, e.g., are 

#11-#22" * = ( 1 - 2 q + r  2) #11+rZ#22-r~#l~ 

--(1--2r 1 ~-r2)#22 =(1 --2rl)(#11 --#22) 
and 

#~'1 -#*2 =(1 - q )  #11 + q  #22-q  #11 -(1 - r j  ~11 

= ( 1 - 2 r l )  (#11 -#22) ,  

respectively, where #'1 and /t* 2 are means of marker 
locus genotoypes 11 and 22, respectively, and #11 and #22 
are means of QTL genotypes 11 and 22, respectively. 
Thus, F 2 and doubled haploid progeny additive effect 
biases are equal. These biases affect the power of tests for 
estimating the effects of QTL. In the individual marker 
model, power is a function of the size of an effect and r 1 , 
holding other factors constant. Power decreases as r 1 
increases for an effect of fixed size (Soller and Brody 1976; 
Soller et al. 1979). 

Weller (1986) described expected values of the means 
and variances of marker genotypic classes and approxi- 
mate maximum likelihood methods for estimating the 
parameters of mixed QTL genotypic distributions for F 2 
progeny. Simulations were done using F2 populations of 
500 or 2,000 individuals, r 1 was not well determined using 
these sample sizes, i.e., variances of r 1 estimates were large 
and the likelihood surface was flat in the r 1 dimension. 
Estimates of the means and variances of quantitative trait 
locus genotypes were fairly well determined (Weller 1986). 

In this paper, we describe flanking marker genetic 
models for doubled haploid (DH), recombinant inbred 
(RI), backcross (BC), F 1 testcross (F1TC), DH testcross 
(DHTC), RI testcross (RITC), F 2,and F 3 progeny. In ad- 
dition, we describe constrained linear, nonlinear, and 
normal distribution mixture models for estimating the 
means of quantitative trait locus genotypes and recombi- 
nation frequencies between marker and quantitative trait 
loci. 

G e n e t i c  a n d  s t a t i s t i c a l  m o d e l s  

Backcross progeny group genetic models 

DH, RI, BC, F1TC, DHTC, and RITC progeny are in the 
backcross group. Genetic models within this group are 
algebraically equivalent; thus, there is no need to define 
separate models for different progeny types within the 
group. There arc notation differences in the group, and 
differences in the means which can be estimated. But in 
some cases there are no differences, e.g., DH and RI 
progeny have identical notation and can be used to esti- 
mate homozygote QTL means. Their recombination fre- 
quency estimators are different, but the RI estimator is a 
linear function of the DH estimator. 

Let Q denote a quantitative trait locus lying between 
linked codominant molecular marker loci A and B. In 
addition, let r 1 , r 2, and r denote recombination frequen- 
cies between A and Q, B and Q, and A and B, respectively. 
Suppose A, Q, and B locus genotypes in inbred lines 1:'1, 
P2, and P3 are A1A1Q1QIB1B 1, A2A2Q2Q2B2B2, and 
A3A3Q3Q3B3B3, respectively. The models described in 
this paper are based on progeny derived from the F~ 
hybrid between P1 and 1'2. 

Suppose DH lines are produced by self-fertilizing 
doubled haploids derived from the F 1 . Expected values of 
marker genotype means in DH progeny are functions of 
rl, r2, #11, and #22 are means of QTL genotypes Q1 Q1 
and Q2 Q2, respectively. Let 01, Oz, 03, and 04 denote 
expected values of the means of marker genotypes 
AIA1B1B1, A1A1BzB2, AzA2B1B1, and AzAzB2B2, re- 
spectively. Relative frequencies of QTL genotypes within 
marker classes were used to derive expected values. Ex- 
pected values were derived using no-double-crossover 
gamete frequencies (Table 1 and Table 2) and double- 
crossover gamete frequencies (Table 1 and Table 3). For 
example, relative frequencies of QTL genotypes Q1Q1 
and Q2Q2 in the A1A1B1B 1 marker genotypic class are 

1 / 2  (1 - r I - -  r 2 ) / [ 1 / 2  (1 - -  r 1 - -  r 2)1 = 1 .0  

and 0.0, respectively, when there are no double-cross- 
overs. Likewise, relative frequencies of QTL genotypes 
Q1Q1 and QgQe in the A1A1BgB 2 marker genotypic class 
are r2/(r 1 + r2) and q/(r I + r2), respectively. Except for no- 
tation differences, expected values of other progeny types 
in the backcross group are identical to those for DH 
progeny. 

In addition to the no-double-crossover model, we 
derived a genetic model using arbitrary double-crossover 
frequencies (coefficient of coincidence, Table 3). This 
model is theoretically preferable but, as we elaborate 
throughout the paper, there are strong arguments to sup- 
port the use of the no-double-crossover model (Table 2). 
There are, for example, linear model estimators of Be  
and F2 progeny group QTL means and recombination 
frequencies based on the no-double-crossover model. 



Table 1. Genotypes and genotype frequencies for doubled hap- 
loid lines derived from an F 1 (AiA2QiQ2B1Bz) based on no- 
double-crossovers and double-crossovers 

Genotype No-double- Double-crossover 
crossover frequency a 
frequency 

AiAiQiQ1BiB1 1/2(1 - r l - 1 ~ )  1/2(1-r l -r2+fr  i r2) 
A2A2Q2Q2B2B2 1/2(1-ri-r2) l /2 (1 - r l - r2+fr  i r2) 
AiA1Q2Q2B2B2 1/2ri 1/2(rl--fr i rz) 
A2A2Q~Q,B,B ~ 1/2r 1 l /2(q-air ,  r2) 

AiA1Q1Q1B2B2 t/2r2 l/2(ri--fir I r2) 
A2A2Q2Q2B1B 1 t/2r2 1/2(r 1 - f r  1 r2) 
AiA1Q2Q2B1B i 0 1/26r 1 r 2 
A2A2Q1QiB2B 2 0 1/26r i r 2 

q and r 2 are recombination frequencies between A and Q and 
B and Q, respectively, and 6 is the coefficient of coincidence 

Table 2. Marker locus genotypes, QTL genotype mixtures, and 
expected values of marker genotype means for doubled haploid 
progeny based on the no-double-crossover flanking marker 
model 

Marker QTL Expected value of marker 
locus genotype genotype mean" 
genotype mixture 

AiA1B1B1 Q1Q, 0i =P i i  

A1A1B2B2 Q1Q1 +Q2Q2 02 =(r2 #il  +ri  #z2)/(ri +r2) 

=(1--O)#11+O #22 

A2A2BiBi Q~Q~ 3ff Q2Q2 03 =(rl #11 +r2 f122)/(ri+r2) 
= 0  #11 "q-(l --~O) #22 

A2A2B2B2 Q2Q2 04=#22 

a Q = q/r where r = r, + r 2 and r,, r2, and r are recombination 
frequencies between A and Q, B and Q, and A and B, respectively. 
#1~ and ~22 are means of Q~Q~ and Q2Q2 genotypes, respectively 

Table 3. Marker locus genotypes, QTL genotype mixtures, and 
expected values of marker genotype means for doubled haploid 
progeny based on the double crossover flanking marker model 

Marker QTL Expected value of marker 
locus genotype genotype mean a 
genotype mixture 

AiA1BiBi QiQi ~- Q2Q2 [#11( t --rl--r2+fri r2) 
+#22 firl fr2]/Yi 

A1A1B2B2 QiQi +QzQ2 [#11 (r2- frl r2) 
+ #22 (rl - frl @]/72 

A2A2B1B* QIQI+Q2Q2 [#1i(r i-fr l  r2) 
+ #=(r2-&, r2)]/~2 

A2A2B2B2 Q1QI +Q2Q2 [#ll 6rl r2+#22 
�9 (1 - r  1 - r  2 +fr i r2)]/~/1 

a y i= l_r i_r2+2 f r i  r2 and 72=rl+r2--2fri r 2 where r 1 and 
r 2 are recombination frequencies between A and Q and B and Q, 
respectively, and f is the coefficient of coincidence. #ll  and #a2 
are means of QiQ1 and Q2Q2 genotypes, respectively 
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Recombinant  inbred or single-seed descent lines are 

produced by self-fertilizing one individual per line per 

generation for five or more generations beyond the F 2 . RI 
progeny genotypes are the same as those for double hap- 
loid progeny genotypes; however, genotype frequencies 
differ because there are several additional meioses in RI 
progeny (Haldane and Waddington 1931; Cowen 1988). 
Expected values of means of RI line marker genotypes are 

defined by substituting R 1 = 2 r i/(1 + 2 r i ) and R 2 = 2 r z / 
(1 +2r2)  for r 1 and r 2 (Haldane and Waddington 1931) in 

DH expected values (Table 2). R i and R2 are estimated 
instead of r 1 and r 2 and solved for r 1 and r 2 , respectively. 
The respective estimators of r 1 and r 2 are 7 1 = / ~ /  

(2 -2 /~1)  and P2=/~2/(2-21~2). 
Suppose BC progeny are produced using 

Pl (A ia iQiQiB iB1)  as the recurrent parent, i.e., 
(P1 x P2) x P1. Given this cross, expected values of means 

of marker genotypes are functions of rl ,  r2, ]21 i ,  and ]212 
where/Zig is the mean for QIQz genotypic class; thus, BC 

equations are obtained by substituting #i2 and ]222 in the 
DH equations (Table 2). In addition, in backcross proge- 

ny, 0~, 02, 03 , and 04 are expected values of the means of 

marker genotypes A1A,BiB~,  A iAIBIB2,  A tA2BiB i ,  
and AiA2B1B2, respectively. 

Let FiTC, DHTC,  and RITC progeny be produced by 
crossing an F I or DH or RI line, respectively, to P3- 
Cowen (1988) described individual marker models for 

these progeny. In  the flanking marker model, 01, 02, 03, 
and 04 are expected values of the means of marker geno- 

types A1A3B1B3, AIA3BzB3, A2A3B1B3, A2A3B2B3, re- 
spectively, and #13 and ]223 are substituted for ]21i and 
]222, respectively, in DH equations (Table 2). In RITC 
equations, R~ and R e are substituted for q and r e, respec- 
tively. 

Backcross progeny group linear and nonlinear models 

The flanking marker doubled haploid model (Table 2) led 
to several useful statistical models and estimators of re- 
combinat ion frequencies between marker and quanti ta-  
tive trait loci and means of QTL genotypes. The model 
arising directly from these equations is 

Y=]211 xl  + [(r2 # l i  + r i  #=) / ( r i  +r2)] x2 

+[(rl]2ii+r2#22)/(ri+r2)]xa+#22x4+e (1) 

where y is a dependent variable, x l ,  x2, x3, and x4 are 
independent  variables indexing marker genotypes, and e 
is a random experimental error. If the marker genotype is 
AiA~B~B~, then x a = 1, otherwise x 1 =0.  If the marker 
genotpye is AiAiBzB2,  then x 2 = 1, otherwise x 2 =0.  If 
the marker genotype is A2A2B1B ~ , then x 3 = 1, otherwise 
x 3 = 0. If the marker genotype is A2A2BzB2, then x 4 = 1, 
otherwise x 4 = 0. 
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Model (1) is an overparameterized nonlinear model 
because r 1 and r z are not identifiable. Putting 0 =rl/  
(q + r2)= rl/r in Eq. (1) leads to the equivalent model 

Y=#11 xl + [(1-0) #11 +0 #22] x2 

-[-[0 #11 q-(1 --0) #22] X3 +#22 x 4 + e  (2) 

with the constraint 0_< 0 < 1. Depending on the nature of 
the dependent variable, other constraints such as #11 >0  
and #22>0 may be appropriate. The parameters of 
Eq. (2) (#11, #22, and 0) are identifiable and estimable. 
Convergence of the estimation procedure should be im- 
proved by rewriting the model 

Y = # l l ( x l  + x3)+[( l -O) #1, +~ #22] (X2--X3) 
+ #22 (X3 ~- X4) q- e (3) 

and using the same constraints as those used in model (2). 
The problem of estimating r 1 and r 2 is circumvented 

in practice by estimating r = r 1 + r 2 from marker pheno- 
types (Allard 1956) and using this estimate (P) and Eq. (3) 
to estimate 0 and the means, r 1 and r2 can be estimated 
by putting P~ = 0 P and P2 = P - P , .  Equivalently, we can 
define 0 = rl/P, rather than r j r ,  and impose the constraint 
P=r  1 + r  2. This gives Eq. (3), but the definition of 0 is 
slightly different. Estimates of #, t, #22, r, ,  and r 2 based 
on either definition of 0 and (3) are equivalent. 

There are several useful linear models for the back- 
cross progeny group. Putting 01=#11, 02=(1-0)#11  
"~-0 #22' 0 3 = 0  #11+(1--0)#22' and 04=#22 in Eq. (2) 
leads to 

y=O 1 X 1 "t-0 2 X2"-~- 0 3 X3-t-O 4 X,4"~- e , (4) 

where the 0i are marker means. Suppose the 0i are func- 
tionally independent parameters and no constraints are 
imposed, in particular, the equality 01 + 04= 02 +03 is 
ignored, then estimators 01 and 0 z from Eq. (4) can be 
used to estimate the means of QTL genotypes. Suppose, 
however, this equality is used to redefine Eq. (4) by substi- 
tuting 03 = 0 1 - 0 2  + 04, then we get the linear model 

y=Ol (xl + x3)+O2(x2-x3)+O4(x3 + x4)+e. (5) 

Note that the estimators 01, Oz, and 04 of Eq. (5) do not 
coincide with the estimators 01 , 02, and 04 of Eq. (4). An 
estimator of 0 based on Eq. (5) is 

0=(02-01 / / (04-01) .  (6) 

Since Eq. (5) has no constraints, this ~ may not satisfy 
0<0_<1. As before, r~ and r z can be estimated using 
P1 = 0 P and 6 =P-P1.  Suppose 0a, 02, and 0" 4 are the 
least-squares estimators of Eq. (5). Set /~11=0"1 and 
~21~04. If/~11, /~22, and 0 of Eq. (5) satisfy the con- 
straints of Eq. (3), then they coincide with the least- 
squares estimators of Eq. (3). 

The analysis of linear models (4) and (5) and nonlinear 
model (3) is straightforward. Partial derivatives of model 

(3) are needed to implement certain nonlinear model esti- 
mation algorithms, e.g., the Gauss-Newton algorithm 
(Jennrich and Ralston 1978; Gallant 1987). These deriva- 
tives are given in the Appendix. An estimation example 
based on Model (3) and the Gauss-Newton algorithm is 
described in the next section. 

Backcross progeny group normal distribution 
mixture models 

Lander and Botstein (1989) used the EM algorithm 
(Little and Rubin 1987) to develop mapping methods 
where missing genotypic values and quantitative trait 
locus means are simultaneously estimated. They used a 
linear model based on the no-double-crossover model 
where quantitative trait locus genotypes are used as inde- 
pendent variable values (Lander and Botstein 1989). In 
this section, we describe mapping methods using normal 
distribution mixture models where QTL genotypes are 
used as independent variable values. We use maximum 
likelihood methods based on the EM algorithm (Demp- 
ster et al. 1977; Little and Rubin 1987; McLachlan and 
Basford 1988) to simultaneously estimate missing QTL 
genotypic values and means and variances of QTL geno- 
types. In the proposed analysis, mixing weights are equal 
to the segregation ratios for QTL genotypes. 

Maximum likelihood methods are often used to esti- 
mate mixture model parameters. The likelihood function 
used depends on whether or not there are observations of 
known group origin and, if there are, whether or not the 
observations arise in the proportions expected for the 
population under study (Titterington et al. 1985). Let L 1 
and L 2 be the likelihood functions appropriate for situa- 
tions where there are categorized observations. L 1 is used 
when the categorized observations arise in proportions 
different from expected segregation ratios. L 2 is used 
when the categorized observations arise in proportions 
equal to expected segregation ratios. Let L 0 be the likeli- 
hood function appropriate for situations where there are 
no categorized observations. Parameter estimation effi- 
ciency using these likelihoods usually increases as the 
information increases (L 0 < L t < L2) (Titterington et al. 
1985; McLachlan and Basford 1988). 

Mixture model mapping methods can be applied to 
the no-double-crossover (Table 2) or double-crossover 
(Table 3) model. In the no-double-crossover model 
(Table 2), there are categorized observations for each 
group or QTL genotypic class. The means of these classes 
are biased by double-crossovers, but this bias is often 
negligible. In the double-crossover model (Table 3), each 
marker class is comprised of mixtures of the two geno- 
types; thus, there are no categorized observations (known 
QTL genotypes). 

These differences have important ramifications. If the 
no-double-crossover model is used, then Lz should be 
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used. If the double-cross-over model is used, then L o 
must be used, although estimates based on the no-dou- 
ble-crossover model can be used as starting values. In the 
double crossover model, standard Mendelian methods 
can be used to estimate recombination frequencies and 
map distances from estimated QTL genotypic values. 
This is an attractive feature of this model. In the no-dou- 
ble-crossover model, the estimation of recombination fre- 
quencies between marker and quantitative trait loci is 
constrained by the assumption of no double crossovers. 
Thus, recombination frequencies can be estimated direct- 
ly from the hypothesized (categorized) and estimated 
(uncategorized) genotypic values using the constraint 

r = r l  + r  2. 
The use of the no-double-crossover model may be 

justified because estimation based on L 0 is usually less 
efficient than estimation based on L2 (Titterington et al. 
1985), but numerical studies have not been done to inves- 
tigate the statistical properties of recombination frequen- 
cy estimators based on these likelihood functions. The 
difference in efficiency between Lo and g 2 may overshad- 
ow the bias caused by double-crossovers in the no-dou- 
ble-crossover model. We have implemented mapping al- 
gorithms based on both models, but their performance 
has not been investigated. 

In the mixture model, a phenotypic distribution is 
hypothesized to be a mixture of 9 quantitative trait locus 
genotypic distributions. A mixture model for either dou- 
bled haploid genetic model is 

f (y 1~0)= rh qS(y[/*~1, a 2 1 ) + ( 1 - % )  q~(yl#=, a22) (7) 

where qS(y]#, a 2) denotes a univariate normal density 
(Titterington et al. 1985). The objective is to estimate 

0 =[/*.1/*22 0-~1 0-22 ,~]' 
where a~l and 0"22 are phenotypic variances of Q1Q1 and 
02Q2 genotypic distributions, respectively, and ~ is the 
mixing weight for the Q101 genotypic distribution. The 
mixing weight for the 0 2 0 2  genotypic distribution is 
~2 = ( 1  - rtl) .  

To estimate mixing weights, the posterior probabili- 
ties of group membership and genotypic values are esti- 
mated for observations in A,A1B2B 2 and A2A2BIB 1 
marker genotypic classes - the unclassified observations 
(McLachlan and Basford 1988). Two types of errors arise 
when assigning genotypic values in the no-double- 
crossover model - those due to double-crossovers in non- 
combinant classes (A1A1B1B 1 and A2A2B2B2) and those 
due to misclassification in recombinant classes (A aA ,BzB 2 
and A2A=B1B1). Misclassification errors, as was implied 
in the discussion above, are greater than errors caused by 
double-crossovers. This is where the efficiency difference 
arises between L o and L 2. In the double-crossover 
model, where L o is used, every observation must be clas- 
sified. 

The mapping algorithm we developed uses maximum 
likelihood methods based on the EM algorithm to esti- 
mate normal distribution mixture model parameters 
(McLachlan and Basford 1988). Because expected mixing 
weights or proportions are equivalent to expected segre- 
gation ratios for QTL genotypes, classified observations 
supply information about ~. In our algorithm, observa- 
tions in the A1A1BIB1 and A~A2B2B 2 marker genotypic 
classes are used to estimate means, variances, and mixing 
weights of the Q1Q1 and 02Q2 genotypic classes. These 
estimates are used as starting values in the EM algorithm. 
Quantitative trait locus means and variances, mixing 
weights, posterior probabilities of group membership, 
and genotypic values are subsequently estimated using an 
implementation of the EM algorithm (McLachlan and 
Basford 1988). The genotypic values are directly used to 
estimate recombination frequencies between marker and 
quantitative trait loci. We are developing software 
(GENEMAP) using these methods. This software was 
used for the estimation example described in the next 
section. 

F 2 and F 3 progeny genetic models 

F z progeny are produced by self-fertilizing the F t . F 3 lines 
are produced by self-fertilizing F 2 individuals and main- 
taining individual F 3 lines. F 2 individuals and F 3 lines 
have identical expected values when dependent variables 
are observed from bulks of individuals within lines. 
Expected values of means of F 2 and F 3 progeny mark- 
er genotype means are functions of rl~ r 2, #11,/.12 and 
/*22. Let 01 , 02 , 03 , 04 , 05, 06, 0v, 0s, and 09 denote 
expected values of the means of A1A1B1B 1 , A1A1BIB2,  

A1A1B2B2, A1A2BIB1,  A1AzB1B2,  A1A2B2B2, 
A a A 2 B t B t ,  A2A2B1B2, and A2A2B2B2 marker geno- 
types, respectively. 

No double-crossover gamete frequencies (Table 4) were 
used to derive the expected values of F 2 progeny marker 
genotype means (Table 5). Their derivation is described in 
the Appendix. 

F 2 and F 3 progeny linear and nonlinear models 

Just as the expected values in Table 2 led to nonlinear 
model (1) with parameters/.1,,/*22, rl, and r 2, the expect- 
ed values in Table 5 led to a nonlinear model with parame- 
ters /.11, #12, /*22, rl, and r 2. This model, putting 
r = r 1 + r z and 0 = rl /r ,  is 

Y=/*11 X1 -{-[(1 --0) /*11 -}-0 /.12] X2 
+ [(1 - 0) 2/.1, + 2(1 -- 0) 0/.12 + 02/*22] x3 

"3i- [0 /.11 -{-(1 --0) /.12] X4 .At-c-1 {(1 --0) 0(/.11 "}-/'/22) 

-}- [C--2(1 --0) 0] #12} XS-~ [(1 --O) / .12+0 /*22] X6 

+ [02/.11 + 2 (1 - 0) 0/**2 + (1 - -  0) 2 #22]  X7 

+ [0 /.12 + (1 -- 0) /*22] X8 +/*22 X9 + e (8) 



588 

Table 4. Genotypes and gamete frequencies for F 2 progeny 
derived from an F~ (AtA~Q~QzB1Bz) based on no double 
crossovers 

Genotype Frequency" 

A1AIQiQIB1B 1 [1/2(1 - - r  1 --r2)] 2 

AiAiQiQ2BiB 1 0 
AiA~QzQ2BtB 1 0 
AaAaQ1Q1BIB2 211/2(1-q-r2) l /2rz]  
A~A~Q~Q2B~B2 211/2( t -q-rz) l /2h]  
A1AiQ2Q2BiB 2 0 
AiA1QiQiB2B 2 ( l /2r l )  2 
A1AtQ1QzB2B2 2(1/2q 1/2 r2) 
A1A1QzQ2B2~ z ( l / 2 q )  2 
AaA2Q,Q1B1Bi 2 I1/2(1 --q--rz)l/2r~] 
AzA~Q,Q2B~B, 211/2(l-r1-r2)t/2r2] 
AiA2Q2Q2B1B i 0 
AiA~QiQiB1B2 2 [l/2ri  1/2 rz] 
AtA2QtQ2BIB 2 211/2(1 - r  i -r2)]z+2(l/2r1)2+2(l/2r2) 2 

A~AzQ2Q2BiBz 2(1/2rl 1/2 r2) 
AIAzQiQ1B2B 2 0 
A1AzQ1Q2B2B2 2[1/2(l-rl-r2)t/2r2] 
A,A2Q2Q2B2B 2 211/2(1 -r~ - r2) 1/2 rl] 
A2A2Q1Q1BiBI [1/2r1] 2 
AzA2Q~Q2B1B i 2(1/2q 1/2r2) 
AzA2QzQ2BiB1 (1/2r2) 2 
A2AzQ1QIBiB 2 0 
A2A2Q1QzBiB2 2[1/2( t -r1-r2) l /2r i]  
A2A2Q2Q2B,B 2 211/2(1 --r~--r2)l/2r2] 

A2A~Q1QiB2B2 0 
AzA~QIQ~B~B z 0 
AzAzQ2Q2B2B 2 [1/2(1 - r  i - r2)]  z 

rt and r 2 are recombination frequencies between A and Q and 
B and Q, respectively 

where c =(r-  ~ - 1) 2 + 1, y is a dependent variable, x~, x2, 
X3, X4, XS, X6, X7, Xs, and x 9 are dummy variables index- 
ing marker genotypic classes, and e is a random error. The 
parameters #al ,  #12, #22, 4, and c of Eq. (8) satisfy the 
constraints 0 < e < 1 and 1 < c < o0. These parameters are 
identifiable and estimable, r may be estimated and substi- 
tuted in Eq. (8), thus reducing the parameters to #a~, #~2, 
#zz, and O- 

The linear model 

y---O i X1AcO2 x2-~O3 x3-~O4 xg-IvO5 Xs']-O6 x6-~-O7 x7 

+ 08 x8 + 09 x9 + e (9) 

is useful because functions of the 0g can be used to esti- 
mate the means of QTL genotypes, even the mean of the 
QiQ2 genotypic class, and r i and r 2 . 0 i and 09 can be used 
to estimate # ~  and #22, respectively, but, other than 0s, 
there is no obvious estimator of/~12. 0`s, however, is a 
genetically biased estimator of #~z (Table 5). Because the 
number of QiQa and Q2Q2 progeny in the A i A z B i B  z 

marker genotypic class decreases as r decreases, the size of 
the bias, which is often negligible, decreases as r decreases. 

We found a genetically unbiased estimator of #~ 2 using 
linear functions of the 01 (expected values of marker class- 
es). If the coefficients of Eq. (9) are equated with the coeffi- 
cients of Eq. (8), then 

02 +04 +06 + 0 8 = # 1 1 +  2#J_2 + #22; 

hence, a genetically unbiased estimator of Plz is 

/~2 = (02 + 04 + 06 + 0, - 0a - 09)/2. (10) 

Thus, 2 Ol - 02 - 04 - 06 - 08 + 2 09 and 0" 1 - 2 0"5 + 0"9 may 
be used to estimate the contrast/~11 + # 1 2 - 2 # ~ .  

We found an estimator of Q based on linear functions 
of the 0 i of Eq. (9): 

-0"1 +0"2 +0"8-09 
0 = _20"1 +0"2+0"4+0"6+0`8-20"9 ; 

thus, r 1 and r 2 can be estimated by putting ~a = ~ ? and 

~2 = ~ - f l .  
The extension of the mixture model to the F 2 model 

is straightforward. There are, nevertheless, differences be- 
tween the F 2 and BC progeny group models. In the F z 
model, for example, there are categorized observations 
for the Q~Q~ and Q2Q2 genotypic classes. We propose 
using the mean and variance of the A~AzBIB 2 marker 
class as initial estimates of the mean and variance of the 
Qi Qz genotypic class, even though a fraction of the prog- 
eny are Q1Qt and Q2Q2. This allows for the use of L 2. 

Discussion 

We used simulated doubled haploid data to illustrate the 
main features of the nonlinear model analysis. The pa- 
rameter values used to simulate the data were r 1 =0.1, 
r2=0.2, #11=50.0, #2z=51.5,  o-2=4, and n=a00 .  The 
program used for this example and programs for other 
nonlinear models have been compiled (Knapp 1989; 
Knapp and Bridges 1990). Wald-statistics (W) were used 
for hypothesis tests (Gallant 1987). Reciprocals of marker 
genotypic class variances were used to define the weight 
matrix 2 - ,  and ]211/11, ]A22/22, and U2 were used as start- 
ing values. 

The difference between QTL genotype means was ap- 
proximately one standard deviation (Table 6). The hy- 
pothesis of no additive effect of the QTL was rejected 
(W = 5.5 and p =0.021). In addition to this hypothesis, we 
tested H 0 : r l = 0 .  W for this test was 0.3 (p=0.58);  thus, 
we failed to reject the null hypothesis, rl was inefficiently 
estimated in this example. The rl interval estimate cov- 
ered the entire parameter space (Table 6). This example 
illustrates an important  characteristic about the nonlin- 
ear model analysis - recombinatior~ frequencies are less 
efficiently estimated than means. 
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Table 5. Marker locus genotypes, QTL genotype mixtures, and expected values of marker genotypes means for F z progeny based on 
the no-double-crossover flanking marker model 

Marker locus QTL genotype Expected value of marker genotype mean" 
genotype mixture 

A1AIB1B1 Q1Q1 

A1A1B1B2 Q1QI+Q1Q2 

A1A1BeB2 Q1Q1 + Q I 0 2 + Q 2 Q 2  

AIA2B1B1 Q1QI+Q1Q2 

A1A2B,B2 Q1QI+Q1Qz+Q2Q2 

A1A2B2B2 Q1Q2+OzQ2 

A2A2B1B1 Q1Q1 +Q102+O2Q2 

A2A2B1B2 QIQ2+QzQ2 

A2A2B2B2 0202 

01 =/211 

02 __ #11 r2 -t-/212 rl 
r 

03 _/211 rz z + #12 2 r 1 r 2 +/222 r 2 
F 2 

04_ #11rL + #12r2 
r 

05 _ rl rz #11 +rl  r2/222 
( 1 - 2 r + 2 r  z) + 

06 __ #12 r2 + #22 rl 
r 

07 -- #11 r 2 + # 1 2  2r 1 r2 + # 2 2  r2 
r 2 

08 #12 rl + # 2 2  r2 
r 

[(1 - r) 2 + r( + ( r -  q)2] /212 

(1 --2r + 2 r 2) 

09 =/222 

a r = q  +r  2 and r 1, r2, and r are recombination frequencies between A and Q, B and Q, and A and B, respectively. #11, #12 and ]222 
are means of QIQ1, Q1Q2, and 02Q2 genotypes, respectively 

Table 6. Maximum likelihood estimates of doubled haploid 
QTL parameters for a simulated example. The Gauss-Newton 
algorithm was used to estimate the parameters of model (3). The 
parameter values used to simulate the data were r 1 = 0.1, r 2 = 0.2, 
/211 = 50.0, #22 = 51.5, ~r 2 = 4.0, and n = 100 where n is the number 
of doubled haploid lines. The estimated variance, coefficient of 
determination, and recombination frequency between marker 
loci A and B were 6 z = 3.91, R z =0.113, and ?=0.25, respectively 

Parameter Estimate Standard Interval 
error estimate" 

#11 50.07 0.29 49.5, 50.6 
/222 51.17 0.33 50.5, 51.8 
q 0.057 0.10 -0.14, 0.26 

" 1 - e = 0 . 9 5  

The difference in estimation efficiency is partly caused 
by the disparity in information for estimating these 
parameters. The number  of observations making up the 
A1A1B2B 2 and AaAzBIB 1 classes decreases as r decreas- 
es. The A1A1BIB 1 and AaAzBzB 2 classes do not  con- 
tribute information to the estimation of r 1 ; thus, informa- 
tion is limited to observations in the A1A1B2B 2 and 
A2A2B1B, classes. In our example, there were 25 obser- 
vations in these classes, i.e., 25 observations out of 100 for 
estimating r 1 . Thus, there is less information for estimat- 
ing recombination frequencies than means. The variance 

ofr  I increases as the distance between A and B decreases. 
In contrast to recombination frequencies, QTL genotype 
means are efficiently estimated. They are estimated with 
slightly less power than expected when QTL genotypes 
are known. The difference in power decreases as the dis- 
tance between A and B decreases. 

We generated an error sum of squares surface by grid 
searching the mean and recombinat ion frequency param- 
eter space. This surface further illustrates the behavior of 

Eq. (3). An additional example was simulated for the 
error surface analysis using r 1 = 0.1, r 2 =0.2, /211 = 20.0, 
/222=22.0, and a2=16.  Bounds used in the grid search 
were r1=0 .0-0 .30  , /211=16 24, and /222=18-26.  The 
surfaces shown in Figs. 1 and 2 were generated by fitting 
a second-order response surface described by 

SSE(0) = 19,162.94-529.05/211-439.07/222-199.63 rl 

+ 13.00/221 + 9.94/222 + 1518.58 r~ 

+0,38/211/222 _35.08/211 rt +25.06/222 q �9 

r 1 had no effect on SSE(0); however, interactions be- 
tween r 1 and QTL means were significant (Table 7). QTL 

means had significant linear and quadratic effects on 
SSE(0) (Table 7). The shape of the surface was convex 
when r 1 was held constant  (Fig. 1), but  approached a 
stationary ridge when #11 or /222 was held constant  
(Fig. 2). The contours were nearly circular (indicative of 
linearity) when r 1 was held constant  (Fig. 1). The SSE(0) 



590 

RSS 
4 8 8  

352 

217 26 

8Z ~2 

1o 16 

Fig. l .  SSE(0) surface for a simulated doubled haploid experi- 
ment. A second-order response surface (R 2 = 0.97) was estimated 
using SSE(0) (RSS) values from a grid search of the parameter 
space of 0 for a simulated doubled haploid experiment. The 
SSE(0) surface shown was generated by holding r 1 and r z con- 
stant at 0.070 and 0.180, respectively, and varying #11 from 16 to 
24 and #22 from 18 to 26. A population of 100 doubled haploid 
lines was simulated using parametric values of r I =0.l ,  r 2 =0.2, 
#11---20, #zz =22, and a2=4 

Table 7. Analysis of a second-order response surface of residual 
sum of squares estimated by grid searching the parameter space 
of t  1 from 0.00 to 0.30, #11 from 16 to 24, and ~2z from 18 to 26 
for a doubled haploid experiment simulated using r l=0. t ,  
r2=0.2, #11=20, #22=22, az=4, and n=100 where n is the 
number of doubled haploid lines 

Source of Degrees Mean P-value 
variation of square 

freedom 

#11 Linear (L) 1 641,573.0 <0.0001 
#zz L 1 387,007.6 <0.0001 
r 1 L 1 405.8 0.35 
#11 Quadratic (Q) 1 757,552.4 <0.0001 
#z2 Q 1 442,667.4 <0.0001 
r 1 Q 1 23,060.8 < 0.0001 
#11 L x #z2 L 1 922.4 0.16 
#11 L x r 1 Q 1 12,305.6 <0.0001 
#22 Q x r 1 L 1 6,280.5 0.0004 
Residual 90 462.4 

RSS 

383 J 

282 - ~  

/ 0.3 
79 0.2 

24 

2O 28 
/~11 16 

Fig. 2. SSE(0) surface for a simulated doubled haploid experi- 
ment. A second-order response surface (R z -- 0.97) was estimated 
using SSE(0) (RSS) values from a grid search of the parameter 
space of 0 for a simulated doubled haploid experiment. The 
SSE(0) surface shown was generated by holding #22 and r 2 
constant at 21.79 and 0.180, respectively, and varying #11 from 
16 to 24 and r 1 from 0.00 to 0.30. A population of 100 doubled 
haploid lines was simulated using parameteric values of r 1 = 0.1, 
r2 =0-2, /ql  =20, #22=22, and a / = 4  

surface increases and the variance of rl decreases as sam- 
ple size increases. 

We used maximum likel ihood methods  (a pro to type  
of G E N E M A P )  to estimate QTL means, variances, segre- 
gat ion ratios (mixing weights), and recombinat ion  fre- 
quencies for a s imulated doubled  haploid  example. The 
parameter  values used to generate da ta  for this example 
were r I =0.1, r2=0.2,  #11=50.0, /[122=55-0 and cr2=25. 
The est imators  of r 1 and #22 we propose  for mixture 
models  are the usual Mendel ian estimators,  e.g., for dou- 
bled haploids  ~1 = ( n l  + n z ) / n  where nl and n z are num- 
bers of lines having genotypes A 1 A 1 Q z Q  2 and A 2 A z Q . 1 Q 1 ,  

respectively. The usual variances of recombinat ion  fre- 
quencies may not  be valid because the variances of rl and  
r z are functions of QTL genotypic value misclassification 

error, in addi t ion to random experimental  or sampling 
error. 

Likelihoods were est imated using 9 = 1  and 9 - - 2  
where 9 is the number  of groups. We tested the hypothesis 
H0: g = 1 against  H 1:9 = 2  using the log l ikel ihood ratio. 
This statistic is approximate ly  distr ibuted )~2 s- where d f  

is the degrees of freedom for the test (Titterington et al. 
1985; McLachlan  and Basford 1988). Degrees of freedom 
is approximate ly  equal to two times the difference in the 
number  of parameters  in the two tests excluding mixing 
weights (Tit terington et al. t985); d f = 4 for our  example. 
The log l ikelihoods for H o and H 1 were - 2 8 7 . 6  and 
-244.8, respectively; thus, the l ikel ihood ratio was 85.6. 
The probabi l i ty  of this value arising by chance is less than 
0.0001; thus, we rejected H o in favor of H 1 . The evidence 
supports  the existence of a QTL. 

Est imated Q T L  genotypic values were used to esti- 
mate r 1 and r 2 . The estimates were 71 = 0.09 and r2 = 0.21. 
The statistical properties,  distr ibution,  and variances of 
these est imators are not  known. Numerical  studies are 
needed to investigate these propert ies  and methods for 
estimating variances of mixture model  recombinat ion fre- 
quency estimators,  e.g., boots t rapping.  

Differences in power for estimating the effects of QTL 
are predictable.  The power of the linear, nonlinear,  and 
mixture model  methods described in this paper  and the 
linear model  method described by Lander  and Botstein 
(1989) are nearly equivalent, a l though the power of meth- 
ods based on est imated QTL genotypic values, i.e., the 
interval mapping method of Lander  and Botstein (1989) 
and our  mixture model  method is often slightly less than 
the power of the linear and nonlinear  model  methods 
described in this paper.  This happens because QTL geno- 
typic values are est imated with error, and  this error  is 
expected to decrease power. 



The power of the backcross group linear model  (5) is 
as great  or greater than the power of a linear model  where 
missing genotypic values are estimated. Suppose the 
model  

y = #  +'c~+e~j (11) 

is used where y is the dependent  variable, p is the popu-  
lat ion mean, zi is the effect of the i th QTL genotype, eli is 
the r andom error of the jth line of the i th genotype, and 
missing QTL genotypic values are est imated (Lander  and 
Botstein 1989). If there are no double-crossovers,  then 
independent  variable values (QTL genotypic values) are 
missing for y having recombinant  marker  phenotypes  but  
not  for y having nonrecombinant  marker  phenotypes.  
The residual degrees of freedom (d fe )  of Eq. (5) is n - 3  
because #11, 1222, and 0 2 are estimated, whereas d f e  of 
Eq. (11) is n - 3  because #, #11, and #22 are estimated. 
Because n is equal for Eqs. (5) and (11), the power  of these 
methods is nearly equal;  however, the power  of Eq. (11) 
is less than the power of Eq. (5) because of the misclassi- 
fication problem. 

This rat ionale holds for F 2 progeny if marker  classes 
other than the parenta l  and double heterozygote classes 
are pooled and used to est imate a fourth parameter  Op, 

where Op is the mean of the pooled class. Op has no partic-  
ular biological  meaning, but  including observations from 
the marker  classes used to estimate Op increases n and 

d f ~ .  d f ~  is n - 4  because #11, #12, #22, and 0 are est imat-  
ed. d f ~  of Eq. (11) is n - 4  as well because #, #11, #12, and 
#22 are estimated. Thus, the difference in power  of these 
methods  is minor  and p robab ly  unimportant .  Wha t  is 
not  clear is the efficiency of different recombinat ion  fre- 
quency estimators.  Numerica l  studies are needed to ad- 
dress this. 
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Appendix 

Expected values o f  marker genotype means 

Expected values of the means of marker genotypes are func- 
tions of relative frequencies of QTL genotypes within marker 
genotypic classes. For example, frequencies of Q~Q1, QiQ2, 
and Q2Q2 genotypes (Table 2) within the A 1 A I B i B  2 genotypie 
class, assuming no double-crossovers, are 1 / 2 ( 1 - q - r 2 ) r 2 ,  
1 / 2 ( 1 - q - r 2 )  q ,  and 0, respectively; therefore, the expected 
value of the mean is 

[1/2(1 --r  i --r2) r2] /All +[1/2(1 - q  --r2) rl] ]~/12 
02= 

1/2(I - r  1-r2)  r2+ 1/2(1 - r  1 --r2) 1/2r 1 

= (1 - r  I - r2)  r 2 ]-/11 +(1 - r  1 - r2)  r 1 ],/12 
(l --r  I --r2) r2+(1 -- r  I --r2) r i 

The expected value of 0 2 ,  substituting r - q  for r z, is 

[1 --r  i --(r-- q)] (r-- rl) # l i  +[1 --r  i --(r-- ri) ] r i #12 
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[1- -q- - ( r - - r i ) ] ( r - - r i )+[1- - r i - - ( r - - r i ) ]  r 1 

( l - - r ) ( r - - r i ) # i l + ( 1 - - r ) r l ~ 1 2  ( r - - r i ) # i x + r i # i 2  m m 
(1 - r ) ( r - - r i ) + ( 1  --r) r i r 

Similarly, frequencies of Q i Q i ,  QiQ2,  and QzQ2 genotypes 
within the A1A1B2B z genotypic class, assuming no double- 
crossovers, are (1/2r2) 2, 1/2rlr2,  and (1/2rl) 2, respectively; 
therefore, the expected value of the mean is 

1/4rZ2 t i ia+ 1/2ri r2 I~i2 + 1/4r2 #22 
03= 1 / 4 r 2 + l / 2 r i r 2 + l / 4 r ~  

= r~ #l l  +2r i  r2/~12 + r2 1~22 
r~ + 2r i r2 +r  2 

( r - r i ) 2 # i l  + 2 ( r - r l )  ri #12 + r2/'/22 
- ( r - - r i ) 2 + 2 ( r - - r l )  r i +r~ 

= r~ # l i + 2 r l r 2 # i 2 + r  2 #22 
r 2 

DH and F 2 nonlinear model derivatives 

As explained above, partial first-order derivatives of Eqs. (3) and 
(8) are needed to implement Gauss-Newton or Marquardt al- 
gorithms (Gallant 1987). For DH model (3), they are 

~/~/111 : X  1 + X  3 + ( r - - r  i) (XE--xa)/r 

~ / ~ / 2 2  = X3 + X4 + r l  (x2  - -  X3 ) / r  

~/~rl = ( ] ' / 2 2 - - , a l  1) (x2-- X a)/r. 

For F~ model (8), they are 

~/8#i l  = x l  - Xz (rl - r)/r + x a (r2 _ 2 r r i + r2)/r + x4 rl /r  

- x s ( r ~ - r r i ) / ( 1 - 2 r  +2r2) +x7 r2/r 2 , 

~/~#l 2 = x z q / r  + x 3 (2 r q - 2 r~)/r 2 + x 4 ( r -  r i )/r - x 6 (q - r)/r 

- x s ( 2 r - 2 r  2 - 2 r  i - 1 + 2rx r ) / ( 1 - 2 r  + 2 r z) 

+ xv (2r r  i - 2 r 2 ) / r Z + x 8  r l /r ,  

~/~!122 = x 9 - x 8 (rl - r)/r + x 7 (r 2 - 2 r r i + r2)/r 2 + x 6 ri /r 

- xs (r  2 - r r i ) / ( 1  -- 2r  + 2rZ)+ x3 r2 /r 2, 

O/~r~ =[(x~--x2) ( # ~ - - / ~ ) ] / r  

+ x3 (2rl #11 --2r#1 i --4rl  #12 + 2 r  #12 + 2 q  P22)/r 2 

xs(2r i  #11 - r  # l ,  - - 4 q  Pi2 +2r  #i2 + 2rl  /122- r#22) 
+ l _ 2 r 2 + 2 r  2 

+ [(Xs -x~)  ( ~  - #=)]/r 

+ xv (2 rl Pll  - -2r  #12 --4rl  #12-- 2 r #22 +2r i  1222)/r2" 
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